organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Methyl-2-phenylpiperazin-4-ium-1yl)pyridine-3-carboxylate dihydrate

Ai-Jun Li,^a* Xiao-Hua Zhang,^b Wen-Qian Sun,^c Xue-Qin Zhou^c and Dong-Zhi Liu^c

^aCollege of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China, ^bDepartment of Chemical and Environmental Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, People's Republic of China, and ^cSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: liaj@yeah.net

Received 11 January 2008; accepted 21 April 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.117; data-to-parameter ratio = 16.3.

The title compound, $C_{17}H_{19}N_3O_2 \cdot 2H_2O$, is particularly useful in the preparation of mirtazapine, which is the active agent in a new class of antidepressants. It crystallized as a zwitterion with two molecules of water in the asymmetric unit. The crystal structure is dominated by a system of hydrogen bonds involving the positively charged N atom and both water molecules.

Related literature

For details of the synthesis see: Eiichi *et al.* (2002*a*,*b*); Metzger *et al.* (2004). For related literature, see: Singer *et al.* (2004).

Experimental

Crystal data

 $C_{17}H_{19}N_3O_2 \cdot 2H_2O$ $V = 1741.6 (16) Å^3$
 $M_r = 333.38$ Z = 4

 Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation

 a = 12.730 (7) Å $\mu = 0.09 \text{ mm}^{-1}$

 b = 8.157 (4) Å T = 294 (2) K

 c = 16.814 (9) Å $0.24 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\rm min} = 0.978, T_{\rm max} = 0.984$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.117$ S = 1.003550 reflections 218 parameters $R_{\rm int} = 0.051$

9611 measured reflections

3550 independent reflections

2039 reflections with $I > 2\sigma(I)$

7 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdotsO1^{i}$	0.91	1.77	2.681 (2)	178
$O3-H3C\cdots O4^{ii}$	0.87	1.92	2.781 (3)	179
$O4-H4A\cdots O2^{iii}$	0.85	1.94	2.761 (2)	162
O3−H3B···O1	0.87	2.21	3.038 (3)	161
$O4 - H4B \cdots N1$	0.85	2.23	3.037 (3)	159

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$, (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x, y + 1, z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2184).

References

Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Eiichi, I. & Kanami, Y. (2002a). US patent 6 376 668.

Eiichi, I. & Kanami, Y. (2002b). US patent 6 437 120.

Metzger, L., & Wizel, S. (2004). US patent 6 774 230.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Singer, C., Liberman, A. & Finkelstein, N. (2004). US patent 20 040 176 591.

supplementary materials

Acta Cryst. (2008). E64, o1234 [doi:10.1107/S1600536808011288]

2-(4-Methyl-2-phenylpiperazin-4-ium-1-yl)pyridine-3-carboxylate dihydrate

A.-J. Li, X.-H. Zhang, W.-Q. Sun, X.-Q. Zhou and D.-Z. Liu

Comment

The title compound, $C_{17}H_{19}N_3O_2 H_2O_2$, is particularly useful in the preparation of mirtazapine which is the active agent in a new class of antidepressants. It crystallized as a zwitterion with two molecues of water in the asymmetric unit (Fig 1). The central piperazine ring has a normal chair conformation. In the molecule, the dihedral angle is 81.20 between plane 1(C7 C8 C9 C10) and plane 2(C11 C12 C13 C14 C15 C16), the dihedral angle is 68.40 between plane 2(C11 C12 C13 C14 C15 C16) and plane 3(N1 C2 C3 C4 C5 C6) and the the dihedral angle is 36.90 between plane 1 and plane 3. Packing is dominated by a system of hydrogen bonds involving the positively charged nitrogen and both water molecules (Table 1, Fig. 2)

Experimental

To 162 g of 1-butanol were added 2-(4-methyl-2-phenylpiperazine-1-yl)pyridine-3-carbonitrile(54 g, 0.2 mol) and 60.93 g of potassium hydroxide. The mixture was heated to 125 - 135 centigrade degree. (Eiichi, *et al.*, 2002*a*; Eiichi, *et al.*, 2002*b*; Metzger, *et al.*, 2004) After 7 h, the reaction mixture was cooled and the butanol removed from the mixture by vacuum distilation after which fresh water and toluene were added and the two phases were separated. The water solution was neutralized with hydrochloric acid to pH=6.5–7. The water was evaporated and toluene was added. The inorganic salt were filtered and toluene solution was evaporated to dryness. Yield:52 g(90%). (Singer *et al.*, 2004) Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol-toluene solution at room temperature over 30 days.

Refinement

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.98 Å and N—H=0.949 Å $U_{iso}(H)$ = 1.2 $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids.

Fig. 2. The crystal structure of (I), viewed along a axis

2-(4-Methyl-2-phenylpiperazin-4-ium-1-yl)pyridine-3-carboxylate dihydrate

Crystal data	
$C_{17}H_{19}N_3O_2 \cdot 2H_2O_1$	$F_{000} = 712$
<i>M_r</i> = 333.38	$D_{\rm x} = 1.271 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
a = 12.730 (7) Å	Cell parameters from 1949 reflections
b = 8.157 (4) Å	$\theta = 3.0-22.9^{\circ}$
c = 16.814 (9) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 94.031 \ (10)^{\circ}$	T = 294 (2) K
$V = 1741.6 (16) \text{ Å}^3$	Block, colorless
Z = 4	$0.24 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3550 independent reflections
Radiation source: fine-focus sealed tube	2039 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.051$
T = 294(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -14 \rightarrow 15$
$T_{\min} = 0.978, T_{\max} = 0.984$	$k = -10 \rightarrow 9$
9611 measured reflections	$l = -21 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.117$	$w = 1/[\sigma^2(F_o^2) + (0.0459P)^2 + 0.2854P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$

3550 reflections218 parameters

 $\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

7 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.23746 (11)	-0.07865 (17)	0.91677 (8)	0.0468 (4)
O2	0.09369 (12)	-0.19110 (17)	0.85735 (9)	0.0523 (4)
N1	0.01524 (12)	0.33067 (19)	0.81432 (9)	0.0336 (4)
N2	0.09094 (11)	0.12896 (18)	0.73567 (8)	0.0276 (4)
N3	0.18394 (12)	0.11644 (19)	0.58307 (8)	0.0317 (4)
H3A	0.2110	0.2203	0.5847	0.038*
C1	0.14487 (17)	-0.0721 (2)	0.88370 (10)	0.0326 (5)
C2	0.09270 (14)	0.0949 (2)	0.88117 (10)	0.0284 (4)
C3	0.06312 (16)	0.1573 (2)	0.95305 (11)	0.0377 (5)
Н3	0.0816	0.1015	1.0002	0.045*
C4	0.00669 (17)	0.3009 (3)	0.95524 (12)	0.0433 (5)
H4	-0.0156	0.3411	1.0030	0.052*
C5	-0.01572 (17)	0.3828 (3)	0.88490 (12)	0.0412 (5)
H5	-0.0543	0.4795	0.8860	0.049*
C6	0.06542 (14)	0.1873 (2)	0.81196 (10)	0.0276 (4)
C7	0.20574 (14)	0.1119 (2)	0.72897 (10)	0.0322 (5)
H7A	0.2362	0.0515	0.7746	0.039*
H7B	0.2377	0.2198	0.7296	0.039*
C8	0.23032 (16)	0.0240 (2)	0.65354 (10)	0.0345 (5)
H8A	0.3060	0.0155	0.6509	0.041*
H8B	0.2013	-0.0860	0.6535	0.041*
C9	0.06793 (15)	0.1316 (2)	0.58939 (10)	0.0333 (5)
H9A	0.0367	0.0231	0.5880	0.040*
H9B	0.0375	0.1924	0.5439	0.040*
C10	0.04152 (14)	0.2186 (2)	0.66603 (10)	0.0278 (4)
H10	0.0702	0.3300	0.6658	0.033*
C11	-0.07784 (15)	0.2284 (2)	0.66480 (10)	0.0302 (5)

supplementary materials

C12	-0.12829 (16)	0.3603 (3)	0.62727 (11)	0.0396 (5)
H12	-0.0887	0.4409	0.6042	0.048*
C13	-0.23716 (18)	0.3743 (3)	0.62352 (13)	0.0502 (6)
H13	-0.2699	0.4638	0.5981	0.060*
C14	-0.29645 (18)	0.2561 (3)	0.65735 (13)	0.0530 (6)
H14	-0.3693	0.2660	0.6556	0.064*
C15	-0.24739 (17)	0.1225 (3)	0.69391 (13)	0.0530 (6)
H15	-0.2875	0.0418	0.7164	0.064*
C16	-0.13856 (16)	0.1075 (3)	0.69733 (11)	0.0419 (5)
H16	-0.1062	0.0162	0.7215	0.050*
C17	0.20966 (18)	0.0401 (3)	0.50601 (11)	0.0486 (6)
H17A	0.1818	-0.0693	0.5028	0.073*
H17B	0.2847	0.0364	0.5033	0.073*
H17C	0.1790	0.1040	0.4624	0.073*
O3	0.40776 (15)	0.1829 (2)	0.92970 (9)	0.0746 (5)
H3B	0.3615	0.1080	0.9385	0.112*
H3C	0.4310	0.1736	0.8827	0.112*
O4	0.01683 (14)	0.6489 (2)	0.72071 (9)	0.0695 (5)
H4A	0.0391	0.7172	0.7563	0.104*
H4B	0.0095	0.5500	0.7353	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0447 (10)	0.0401 (9)	0.0542 (9)	0.0108 (7)	-0.0058 (7)	-0.0023 (7)
O2	0.0587 (11)	0.0337 (9)	0.0632 (10)	-0.0008 (8)	-0.0061 (8)	-0.0103 (8)
N1	0.0378 (10)	0.0320 (10)	0.0306 (9)	0.0057 (8)	0.0001 (7)	-0.0031 (7)
N2	0.0271 (9)	0.0327 (9)	0.0230 (8)	0.0018 (7)	0.0017 (6)	-0.0002 (7)
N3	0.0354 (10)	0.0322 (9)	0.0282 (8)	-0.0069 (7)	0.0073 (7)	-0.0036 (7)
C1	0.0419 (13)	0.0324 (12)	0.0242 (10)	0.0035 (10)	0.0065 (9)	0.0006 (9)
C2	0.0286 (11)	0.0301 (11)	0.0264 (10)	0.0013 (8)	0.0006 (8)	-0.0015 (8)
C3	0.0480 (13)	0.0394 (12)	0.0258 (10)	0.0048 (10)	0.0033 (9)	0.0010 (9)
C4	0.0550 (15)	0.0448 (13)	0.0307 (11)	0.0100 (11)	0.0075 (10)	-0.0093 (10)
C5	0.0489 (14)	0.0374 (12)	0.0373 (12)	0.0131 (10)	0.0026 (10)	-0.0088 (10)
C6	0.0261 (10)	0.0290 (11)	0.0275 (10)	-0.0016 (9)	0.0000 (8)	-0.0032 (8)
C7	0.0297 (11)	0.0376 (12)	0.0294 (10)	0.0010 (9)	0.0037 (8)	0.0016 (9)
C8	0.0356 (12)	0.0325 (11)	0.0359 (11)	0.0026 (9)	0.0066 (9)	0.0000 (9)
C9	0.0321 (11)	0.0389 (12)	0.0288 (10)	-0.0060 (9)	0.0027 (8)	-0.0013 (9)
C10	0.0297 (11)	0.0288 (10)	0.0248 (10)	-0.0026 (8)	0.0009 (8)	0.0010 (8)
C11	0.0313 (12)	0.0376 (12)	0.0215 (9)	-0.0016 (9)	-0.0004 (8)	-0.0035 (9)
C12	0.0370 (13)	0.0410 (12)	0.0401 (12)	-0.0013 (10)	-0.0026 (9)	-0.0009 (10)
C13	0.0420 (14)	0.0486 (14)	0.0579 (14)	0.0055 (11)	-0.0114 (11)	-0.0019 (12)
C14	0.0327 (13)	0.0750 (18)	0.0506 (14)	0.0020 (13)	-0.0014 (11)	-0.0101 (13)
C15	0.0366 (14)	0.0773 (18)	0.0455 (13)	-0.0175 (13)	0.0051 (10)	0.0070 (13)
C16	0.0383 (13)	0.0498 (14)	0.0373 (12)	-0.0060 (11)	-0.0002 (9)	0.0063 (10)
C17	0.0517 (14)	0.0610 (15)	0.0350 (12)	-0.0073 (12)	0.0166 (10)	-0.0150 (11)
O3	0.1035 (15)	0.0632 (12)	0.0586 (10)	-0.0064 (11)	0.0167 (9)	-0.0125 (9)
O4	0.0919 (14)	0.0659 (11)	0.0516 (10)	-0.0169 (10)	0.0098 (9)	-0.0118 (9)

Geometric parameters (Å, °)

02-C1 1.234 (2) $C9-H9A$ 0.9700 $NI-C6$ 1.335 (2) $C9-H9B$ 0.9700 $NI-C6$ 1.336 (2) $C10-C11$ 1.520 (3) $N2-C6$ 1.427 (2) $C10-H10$ 0.9800 $N2-C7$ 1.480 (2) $C11-C12$ 1.382 (3) $N3-C8$ 1.491 (2) $C12-C13$ 1.388 (3) $N3-C9$ 1.493 (2) $C12-H12$ 0.9300 $N3-C17$ 1.495 (2) $C13-H13$ 0.9300 $C1-C2$ 1.514 (3) $C14-C15$ 1.378 (3) $C2-C6$ 1.409 (2) $C15-C16$ 1.388 (3) $C3-C4$ 1.376 (3) $C1-H17A$ 0.9600 $C3-C4$ 1.376 (3) $C1-H17A$ 0.9600 $C3-H3$ 0.9300 $C17-H17A$ 0.9600 $C4-C5$ 1.371 (3) $C17-H17A$ 0.9600 $C5-H5$ 0.9300 $C17-H17A$ 0.9600 $C5-H48$ 0.9700 $0-H44$ 0.8512 $C8-H81$ 0.9700	01—C1	1.269 (2)	C9—C10	1.529 (2)
N1-C6 1.335 (2) C9-H9B 0.9700 N1-C5 1.346 (2) C10-C11 1.520 (3) N2-C6 1.427 (2) C10-H10 0.9800 N2-C7 1.480 (2) C11-C12 1.382 (3) N3-C8 1.491 (2) C12-C13 1.388 (3) N3-C9 1.495 (2) C13-C14 1.373 (3) N3-C17 1.495 (2) C13-C14 1.379 (3) C2-C3 1.388 (2) C14-C15 1.379 (3) C2-C3 1.388 (2) C14-H14 0.9300 C2-C6 1.409 (2) C15-C16 1.388 (3) C3-C4 1.376 (3) C15-H15 0.9300 C4-C5 1.371 (3) C17-H17A 0.9600 C4-H4 0.9300 C17-H17A 0.9600 C4-H4 0.9300 C17-H17A 0.9600 C7-H7A 0.9700 O3-H3B 0.8682 C7-H7A 0.9700 O4-H4B 0.8504 C8-H8B 0.9700 O4-H4B 0.8504 C6-N1-C	O2—C1	1.234 (2)	С9—Н9А	0.9700
N1-C5 1.346 (2) C10-C11 1.520 (3) N2-C6 1.427 (2) C10-H10 0.9800 N2-C7 1.480 (2) C11-C12 1.382 (3) N3-C8 1.491 (2) C12-C13 1.388 (3) N3-C9 1.493 (2) C12-C14 1.373 (3) N3-C17 1.495 (2) C13-C14 1.373 (3) N3-H3A 0.9140 C13-H13 0.9300 C1-C2 1.514 (3) C14-C15 1.379 (3) C2-C6 1.490 (2) C15-C16 1.388 (3) C3-C4 1.376 (3) C15-H15 0.9300 C3-C4 1.376 (3) C15-H15 0.9300 C4-C5 1.371 (3) C17-H17A 0.9600 C4-H4 0.9300 C17-H17A 0.9600 C7-C8 1.509 (2) 03-H3B 0.8682 C7-H7A 0.9700 04-H4A 0.8512 C8-H8B 0.9700 04-H4A 0.8512 C8-H8B 0.9700 C4-C19-H10 112.07 (14) C6-N2-C7 112.85 (13) N3-C9-H19A 10.92 C7-N2-C10	N1—C6	1.335 (2)	С9—Н9В	0.9700
N2-C6 1.427 (2) C10-H10 0.9800 N2-C7 1.480 (2) C11-C12 1.382 (3) N2-C10 1.482 (2) C11-C16 1.389 (3) N3-C8 1.491 (2) C12-C13 1.338 (3) N3-C9 1.493 (2) C12-H12 0.9300 N3-C17 1.495 (2) C13-C14 1.373 (3) N3-H3A 0.9140 C13-H13 0.9300 C1-C2 1.514 (3) C14-C15 1.379 (3) C2-C3 1.388 (2) C14-H14 0.9300 C3-C4 1.376 (3) C15-C16 1.388 (3) C3-C4 1.371 (3) C17-H17A 0.9600 C4-C5 1.371 (3) C17-H17A 0.9600 C5-H5 0.9300 C17-H17B 0.9600 C5-H5 0.9300 C17-H17B 0.9600 C7-C8 1.509 (2) C3-H3B 0.8582 C7-H7A 0.9700 O4-H4A 0.8512 C8-N3C 0.8604 C7-H7B 0.9700 C8-N3C1	N1—C5	1.346 (2)	C10-C11	1.520 (3)
N2-C7 1.480 (2) C11-C12 1.382 (3) N2-C10 1.482 (2) C11-C16 1.389 (3) N3-C8 1.491 (2) C12-C13 1.388 (3) N3-C9 1.493 (2) C12-H12 0.9300 N3-C17 1.495 (2) C13-C14 1.373 (3) N3-H3A 0.9140 C13-H13 0.9300 C1-C2 1.514 (3) C14-C15 1.379 (3) C2-C6 1.409 (2) C15-C16 1.388 (3) C3-C4 1.376 (3) C15-H15 0.9300 C3-C4 1.371 (3) C17-H17A 0.9600 C4-C5 1.371 (3) C17-H17A 0.9600 C4-H4 0.9300 C17-H17A 0.9600 C5-H5 0.9300 C17-H17A 0.9600 C7-H7A 0.9700 O4-H4B 0.8504 C7-H7B 0.9700 O4-H4B 0.8504 C6-N1-C5 118.28 (16) H8A-C8-H8B 108.2 C6-N2-C7 112.85 (13) N3-C9-C10 112.07 (14) C6-N2-C7 112.85 (13) N3-C9-H9A 109.2 <td< td=""><td>N2—C6</td><td>1.427 (2)</td><td>C10—H10</td><td>0.9800</td></td<>	N2—C6	1.427 (2)	C10—H10	0.9800
N2-C10 $1.482 (2)$ C11-C16 $1.389 (3)$ N3-C8 $1.491 (2)$ C12-C13 $1.388 (3)$ N3-C9 $1.493 (2)$ C12-H12 0.9300 N3-C17 $1.495 (2)$ C13-C14 $1.373 (3)$ N3-H3A 0.9140 C13-H13 0.9300 C1-C2 $1.514 (3)$ C14-C15 $1.379 (3)$ C2-C3 $1.388 (2)$ C14-H14 0.9300 C2-C6 $1.409 (2)$ C15-C16 $1.388 (3)$ C3-C4 $1.376 (3)$ C17-H17A 0.9600 C4-C5 $1.371 (3)$ C17-H17A 0.9600 C4-H4 0.9300 C16-H16 0.9300 C5-H5 0.9300 C17-H17B 0.9600 C5-H5 0.9300 C17-H17C 0.9600 C7-C78 $1.509 (2)$ 03-H3E 0.8662 C7-H7A 0.9700 03-H3E 0.8504 C7-H7B 0.9700 O4-H4A 0.8512 C6-N2-C7 112.85 (13) N3-C9-C10 112.07 (14) C6-N2-C10 115.78 (14) N3-C9-H9A 109.2	N2—C7	1.480 (2)	C11—C12	1.382 (3)
N3-C81.491 (2)C12-C131.388 (3)N3-C91.493 (2)C12-H120.9300N3-C171.495 (2)C13-C141.373 (3)N3-H3A0.9140C13-H130.9300C1-C21.514 (3)C14-C151.379 (3)C2-C31.388 (2)C14-H140.9300C2-C61.409 (2)C15-C161.388 (3)C3-H30.9300C16-H160.9300C4-C51.371 (3)C17-H17A0.9600C4-C51.371 (3)C17-H17A0.9600C4-H40.9300C17-H17B0.9600C5-H50.9300C17-H17B0.9600C7-C81.509 (2)03-H3B0.8682C7-H7A0.970003-H3C0.8664C7-H7B0.970004-H4A0.8512C8-H8A0.970004-H4B0.820C6-N1-C5118.28 (16)H8A-C8-H8B108.2C6-N2-C7112.85 (13)N3-C9-C10112.07 (14)C6-N2-C7112.85 (13)N3-C9-H9A109.2C7-N2-C10110.66 (13)C10-C9-H9B109.2C7-N2-C10110.66 (13)C10-C9-H9B109.2C8-N3-C9108.89 (14)N3-C9-H9B109.2C8-N3-C17112.30 (16)C10-C9-H9B109.2C8-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C17112.30 (16)C10-C9-H9B109.2C9-	N2—C10	1.482 (2)	C11—C16	1.389 (3)
N3-C91.493 (2)C12-H120.9300N3-C171.495 (2)C13-C141.373 (3)N3-H3A0.9140C13-H130.9300C1-C21.514 (3)C14-C151.379 (3)C2-C31.388 (2)C14-H140.9300C2-C61.409 (2)C15-C161.388 (3)C3-C41.376 (3)C15-H150.9300C4-C51.371 (3)C17-H17A0.9600C4-H40.9300C16-H160.9300C4-C51.371 (3)C17-H17A0.9600C5-H50.9300C17-H17B0.9600C7-C81.509 (2)03-H3B0.8682C7-H7A0.970003-H3C0.8664C7-H7B0.970004-H4A0.8504C8-H8A0.9700C4-H4A0.8504C8-H8A0.9700C4-C10112.07 (14)C6-N1-C5118.28 (16)H8A-C8-H8B108.2C6-N2-C7112.85 (13)N3-C9-C10112.07 (14)C6-N2-C10115.78 (14)N3-C9-H9A109.2C8-N3-C9108.89 (14)N3-C9-H9B109.2C8-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C1711.98 (14)H9A-C9-H9B109.2C9-N3-C1711.98 (14)H9A-C9-H9B107.9C8-N3-H3A107.9C11-C10-C9106.98 (14)O2-C1-C1125.09 (19)N2-C10-C11113.90 (14)C9-C1-C2116.26 (18)C9-C10-H110108.8C3-C2-C6117.18 (17)C12-C11-C16118.64 (17) <td>N3—C8</td> <td>1.491 (2)</td> <td>C12—C13</td> <td>1.388 (3)</td>	N3—C8	1.491 (2)	C12—C13	1.388 (3)
N3-C171.495 (2)C13-C141.373 (3)N3-H3A0.9140C13-H130.9300C1-C21.514 (3)C14-C151.379 (3)C2-C31.388 (2)C14-H140.9300C2-C61.409 (2)C15-C161.388 (3)C3-C41.376 (3)C15-H150.9300C3-H30.9300C16-H160.9300C4-C51.371 (3)C17-H17A0.9600C5-H50.9300C17-H17B0.9600C5-H50.9300C17-H17C0.9600C7-C81.509 (2)03-H3B0.8682C7-H7A0.970003-H3C0.8664C7-H7B0.970004-H4A0.8512C8-H8B0.9700C4-H4A0.8504C8-H8B0.9700C4-H4A0.8504C8-H8B0.9700C4-H9A109.2C6-N1-C5118.28 (16)H8A-C8-H8B108.2C6-N2-C7112.85 (13)N3-C9-C10112.07 (14)C6-N2-C10115.78 (14)N3-C9-H9A109.2C8-N3-C9108.89 (14)N3-C9-H9B109.2C8-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-H3A107.1N2-C10-C11113.90 (14)C9-N3-H3A107.9C11-C10-H10108.8C17-C2116.26 (18)C9-C10-H10108.8C17-C1115.87 (14)C12-C11-C16118.62 (19)C2-C1-C1 <td< td=""><td>N3—C9</td><td>1.493 (2)</td><td>C12—H12</td><td>0.9300</td></td<>	N3—C9	1.493 (2)	C12—H12	0.9300
N3—H3A0.9140C13—H130.9300C1—C21.514 (3)C14—C151.379 (3)C2—C31.388 (2)C14—H140.9300C2—C61.409 (2)C15—C161.388 (3)C3—C41.376 (3)C15—H150.9300C4—C51.371 (3)C17—H17A0.9600C4—C51.371 (3)C17—H17A0.9600C4—C51.509 (2)O3—H3B0.8682C7—H50.9300C17—H17A0.9600C7—C81.509 (2)O3—H3B0.8682C7—H7A0.9700O4—H4A0.8512C8—H8A0.9700O4—H4A0.8512C6—NI—C5118.28 (16)H8A—C8—H8B108.2C6—N2—C7112.85 (13)N3—C9—C10112.07 (14)C6—N2—C10115.78 (14)N3—C9—H9A109.2C7—N2—C10110.66 (13)C10—C9—H9A109.2C8—N3—C17112.30 (16)C10—C9—H9B109.2C9—N3—C17111.98 (14)H9A—C9—H9B107.9C8—N3—H3A107.1N2—C10—C11113.90 (14)C9—N3—H3A107.1N2—C10—C11108.8O2—C1—C1125.09 (19)N2—C10—H10108.8O2—C1—C2118.56 (18)C11—C10—H10108.8O2—C1—C2116.26 (18)C9—C10—H10108.8O2—C1—C1116.26 (18)C9—C10—H10108.8O2—C1—C1116.78 (16)C12—C11—C16118.64 (17)C6—C2—C1125.20 (16)C14—C10—C10127.27 0.045	N3—C17	1.495 (2)	C13—C14	1.373 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—H3A	0.9140	С13—Н13	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.514 (3)	C14—C15	1.379 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.388 (2)	C14—H14	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C6	1.409 (2)	C15—C16	1.388 (3)
C3-H30.9300C16-H160.9300C4-C51.371 (3)C17-H17A0.9600C4-H40.9300C17-H17B0.9600C5-H50.9300C17-H17C0.9600C7-C81.509 (2)O3-H3B0.8682C7-H7A0.9700O3-H3C0.8664C7-H7B0.9700O4-H4A0.8512C8-H8A0.9700O4-H4B0.8504C8-H8B0.9700C4-H4B0.8504C6-N1-C5118.28 (16)H8A-C8-H8B108.2C6-N2-C7112.85 (13)N3-C9-C10112.07 (14)C6-N2-C10115.78 (14)N3-C9-H9A109.2C7-N2-C10110.66 (13)C10-C9-H9A109.2C8-N3-C9108.89 (14)N3-C9-H9B109.2C9-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-H3A107.1N2-C10-C11113.90 (14)C9-N3-H3A107.9C11-C10-C9106.98 (14)C9-N3-H3A107.9C11-C10-C9106.98 (14)C2-C1-C2118.56 (18)C11-C10-H10108.8C2-C1-C2118.56 (18)C11-C10-H10108.8C3-C2-C6117.18 (17)C12-C11-C10118.62 (19)C3-C2-C1116.78 (16)C12-C11-C10118.64 (17)C6-C2-C1125.09 (16)C12-C11-C10118.64 (17)C6-C2-C1125.09 (16)C12-C11-C10118.64 (17)C6-C2-C1116.78 (16)C12-C11-C10118.64 (17)	C3—C4	1.376 (3)	C15—H15	0.9300
C4—C51.371 (3)C17—H17A0.9600C4—H40.9300C17—H17B0.9600C5—H50.9300C17—H17C0.9600C7—C81.509 (2)O3—H3B0.8682C7—H7A0.9700O3—H3C0.8664C7—H7B0.9700O4—H4A0.8512C8—H8A0.9700O4—H4B0.8504C8—H8B0.9700O4—H4B0.8504C6—N1—C5118.28 (16)H8A—C8—H8B108.2C6—N2—C7112.85 (13)N3—C9—C10112.07 (14)C6—N2—C10115.78 (14)N3—C9—H9A109.2C7—N2—C10110.66 (13)C10—C9—H9A109.2C8=N3—C9108.89 (14)N3—C9—H9B109.2C8=N3—C17112.30 (16)C10—C9—H9B109.2C9—N3—C17111.98 (14)H9A—C9—H9B107.9C8=N3—H3A107.1N2—C10—C11113.90 (14)C9—N3—H3A107.1N2—C10—C9106.98 (14)O2=C1—C2118.56 (18)C11—C10—C9106.98 (14)O2=C1—C2118.56 (18)C11—C10—H10108.8O1=C1—C2116.26 (18)C9—C10—H10108.8C3=C2—C6117.18 (17)C12=C11—C16118.62 (19)C3=C2=C1116.78 (16)C12=C11—C10118.64 (17)C6=C2=C1116.78 (16)C12=C11—C10118.64 (17)C6=C2=C1116.78 (16)C12=C11—C10118.64 (17)	С3—Н3	0.9300	C16—H16	0.9300
C4—H40.9300C17—H17B0.9600C5—H50.9300C17—H17C0.9600C7—C81.509 (2)O3—H3B0.8682C7—H7A0.9700O3—H3C0.8664C7—H7B0.9700O4—H4A0.8512C8—H8A0.9700O4—H4B0.8504C8—H8B0.9700C4—H4B0.8504C6—N1—C5118.28 (16)H8A—C8—H8B108.2C6—N2—C7112.85 (13)N3—C9—C10112.07 (14)C6—N2—C10115.78 (14)N3—C9—H9A109.2C7—N2—C10110.66 (13)C10—C9—H9A109.2C8—N3—C9108.89 (14)N3—C9—H9B109.2C9—N3—C17112.30 (16)C10—C9—H9B109.2C9—N3—H3A107.1N2—C10—C11113.90 (14)C9—N3—H3A107.9C11—C10—C9106.98 (14)O2=C1—O1125.09 (19)N2—C10—H10108.8O2=C1—C2118.56 (18)C11—C10—H10108.8O1—C1—C2116.26 (18)C9—C10—H10108.8O1—C1—C2116.78 (16)C12—C11—C16118.62 (19)C3—C2—C1116.78 (16)C12—C11—C16118.64 (17)C6—C2—C1116.78 (16)C12—C11—C10118.64 (17)C6—C2—C1125.90 (16)C16—C11—C10118.64 (17)	C4—C5	1.371 (3)	С17—Н17А	0.9600
C5-H50.9300C17-H17C0.9600C7-C81.509 (2)O3-H3B0.8682C7-H7A0.9700O3-H3C0.8664C7-H7B0.9700O4-H4A0.8512C8-H8A0.9700O4-H4B0.8504C8-H8B0.9700C4-H4B0.8504C6-N1-C5118.28 (16)H8A-C8-H8B108.2C6-N2-C7112.85 (13)N3-C9-C10112.07 (14)C6-N2-C10115.78 (14)N3-C9-H9A109.2C7-N2-C10110.66 (13)C10-C9-H9A109.2C8-N3-C9108.89 (14)N3-C9-H9B109.2C8-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C17111.98 (14)H9A-C9-H9B107.9C8-N3-H3A107.1N2-C10-C11113.90 (14)C9-N3-H3A107.9C11-C10-C9106.98 (14)O2-C1-O1125.09 (19)N2-C10-H10108.8O1-C1-C2118.56 (18)C11-C10-H10108.8O1-C1-C2116.26 (18)C9-C10-H10108.8O1-C1-C2116.26 (18)C9-C10-H10108.4C3-C2-C1116.78 (16)C12-C11-C16118.64 (17)C6-C2-C1125.90 (16)C16-C11-C10118.64 (17)C6-C2-C1125.90 (16)C16-C11-C10118.64 (17)	C4—H4	0.9300	С17—Н17В	0.9600
C7—C8 $1.509 (2)$ O3—H3B 0.8682 C7—H7A 0.9700 O3—H3C 0.8664 C7—H7B 0.9700 O4—H4A 0.8512 C8—H8A 0.9700 O4—H4B 0.8504 C8—H8B 0.9700 C6—N1—C5 $118.28 (16)$ H8A—C8—H8BC6—N2—C7 $112.85 (13)$ N3—C9—C10 $112.07 (14)$ C6—N2—C10 $115.78 (14)$ N3—C9—H9A 109.2 C7—N2—C10 $110.66 (13)$ C10—C9—H9A 109.2 C8—N3—C9 $108.89 (14)$ N3—C9—H9B 109.2 C9—N3—C17 $112.30 (16)$ C10—C9—H9B 109.2 C9—N3—C17 $111.98 (14)$ H9A—C9—H9B 107.9 C8—N3—H3A 107.1 N2—C10—C11 $113.90 (14)$ C9—N3—H3A 107.9 C11—C10—C9 $106.98 (14)$ O2—C1—O1 $125.09 (19)$ N2—C10—H10 108.8 O1—C1—C2 $116.26 (18)$ C10—C1—H10 108.8 O1—C1—C2 $116.26 (18)$ C12—C11—C16 $118.62 (19)$ C3—C2—C6 $117.18 (17)$ C12—C11—C10 $118.64 (17)$ C6—C2—C1 $125.99 (16)$ C16—C11—C10 $118.64 (17)$ C6—C2—C1 $125.99 (16)$ C12—C11—C10 $118.64 (17)$	С5—Н5	0.9300	C17—H17C	0.9600
C7—H7A0.9700O3—H3C0.8664C7—H7B0.9700O4—H4A0.8512C8—H8A0.9700O4—H4B0.8504C8—H8B0.9700C6—N1—C5118.28 (16)H8A—C8—H8B108.2C6—N2—C7112.85 (13)N3—C9—C10112.07 (14)C6—N2—C10115.78 (14)N3—C9—H9A109.2C7—N2—C10110.66 (13)C10—C9—H9A109.2C8—N3—C9108.89 (14)N3—C9—H9B109.2C8—N3—C17112.30 (16)C10—C9—H9B109.2C9—N3—C17111.98 (14)H9A—C9—H9B107.9C8—N3—H3A107.1N2—C10—C11113.90 (14)C9—N3—H3A107.9C11—C10—C9106.98 (14)O2—C1—O1125.09 (19)N2—C10—H10108.8O2—C1—C2118.56 (18)C11—C10—H10108.8O1—C1—C2116.26 (18)C9—C10—H10108.8C3—C2—C6117.18 (17)C12—C11—C16118.62 (19)C3—C2—C1116.78 (16)C12—C11—C10118.64 (17)C6—C2—C1125.90 (16)C16—C11—C10118.64 (17)	С7—С8	1.509 (2)	O3—H3B	0.8682
C7—H7B 0.9700 O4—H4A 0.8512 C8—H8A 0.9700 O4—H4B 0.8504 C8—H8B 0.9700 C6—N1—C5 $118.28 (16)$ H8A—C8—H8B 108.2 C6—N2—C7 $112.85 (13)$ N3—C9—C10 $112.07 (14)$ C6—N2—C10 $115.78 (14)$ N3—C9—H9A 109.2 C7—N2—C10 $110.66 (13)$ C10—C9—H9A 109.2 C8—N3—C9 $108.89 (14)$ N3—C9—H9B 109.2 C8—N3—C17 $112.30 (16)$ C10—C9—H9B 109.2 C9—N3—C17 $111.98 (14)$ H9A—C9—H9B 107.9 C8—N3—H3A 107.1 N2—C10—C11 $113.90 (14)$ C9—N3—H3A 107.9 C11—C10—C9 $106.98 (14)$ O2—C1—O1 $125.09 (19)$ N2—C10—H10 108.8 O2—C1—C2 $116.26 (18)$ C9—C10—H10 108.8 C3—C2—C6 $117.18 (17)$ C12—C11—C16 $118.62 (19)$ C3—C2—C1 $116.78 (16)$ C12—C11—C10 $118.64 (17)$ C6—C2—C1 $125.90 (16)$ C16—C11—C10 $122.70 (18)$	С7—Н7А	0.9700	O3—H3C	0.8664
C8—H8A 0.9700 O4—H4B 0.8504 C8—H8B 0.9700 C6—N1—C5 $118.28 (16)$ $H8A$ —C8—H8B 108.2 C6—N2—C7 $112.85 (13)$ $N3$ —C9—C10 $112.07 (14)$ C6—N2—C10 $115.78 (14)$ $N3$ —C9—H9A 109.2 C7—N2—C10 $110.66 (13)$ $C10$ —C9—H9A 109.2 C8—N3—C9 $108.89 (14)$ $N3$ —C9—H9B 109.2 C8—N3—C17 $112.30 (16)$ $C10$ —C9—H9B 109.2 C9—N3—C17 $111.98 (14)$ H9A—C9—H9B 107.9 C8—N3—H3A 108.5 $N2$ —C10—C11 $113.90 (14)$ C9—N3—H3A 107.1 $N2$ —C10—C9 $109.32 (15)$ C17—N3—H3A 107.9 $C11$ —C10—C9 $106.98 (14)$ O2—C1—O1 $125.09 (19)$ $N2$ —C10—H10 108.8 O2—C1—C2 $116.26 (18)$ $C9$ —C10—H10 108.8 C3—C2—C6 $117.18 (17)$ $C12$ —C11—C16 $118.62 (19)$ C3—C2—C1 $16.78 (16)$ $C12$ —C11—C10 $118.64 (17)$ C6—C2—C1 $125.90 (16)$ $C16$ —C11—C10 $122.70 (18)$	С7—Н7В	0.9700	O4—H4A	0.8512
C8—H8B 0.9700 C6—N1—C5118.28 (16)H8A—C8—H8B108.2C6—N2—C7112.85 (13)N3—C9—C10112.07 (14)C6—N2—C10115.78 (14)N3—C9—H9A109.2C7—N2—C10110.66 (13)C10—C9—H9A109.2C8—N3—C9108.89 (14)N3—C9—H9B109.2C8—N3—C17112.30 (16)C10—C9—H9B109.2C9—N3—C17111.98 (14)H9A—C9—H9B107.9C8—N3—H3A108.5N2—C10—C11113.90 (14)C9—N3—H3A107.1N2—C10—C9109.32 (15)C17—N3—H3A107.9C11—C10—C9106.98 (14)O2—C1—O1125.09 (19)N2—C10—H10108.8O2—C1—C2118.56 (18)C11—C10—H10108.8O1—C1—C2116.26 (18)C9—C10—H10108.8C3—C2—C6117.18 (17)C12—C11—C16118.62 (19)C3—C2—C1116.78 (16)C12—C11—C10118.64 (17)C6—C2—C1125.90 (16)C16—C11—C10127.70 (18)	C8—H8A	0.9700	O4—H4B	0.8504
C6-N1-C5118.28 (16)H8A-C8-H8B108.2C6-N2-C7112.85 (13)N3-C9-C10112.07 (14)C6-N2-C10115.78 (14)N3-C9-H9A109.2C7-N2-C10110.66 (13)C10-C9-H9A109.2C8-N3-C9108.89 (14)N3-C9-H9B109.2C8-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C17111.98 (14)H9A-C9-H9B107.9C8-N3-H3A108.5N2-C10-C11113.90 (14)C9-N3-H3A107.1N2-C10-C9109.32 (15)C17-N3-H3A107.9C11-C10-C9106.98 (14)O2-C1-O1125.09 (19)N2-C10-H10108.8O2-C1-C2116.26 (18)C11-C10-H10108.8C3-C2-C6117.18 (17)C12-C11-C16118.62 (19)C3-C2-C1116.78 (16)C12-C11-C10118.64 (17)C6-C2-C1125.90 (16)C16-C11-C10122.70 (18)	C8—H8B	0.9700		
C6-N2-C7112.85 (13)N3-C9-C10112.07 (14)C6-N2-C10115.78 (14)N3-C9-H9A109.2C7-N2-C10110.66 (13)C10-C9-H9A109.2C8-N3-C9108.89 (14)N3-C9-H9B109.2C8-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C17111.98 (14)H9A-C9-H9B107.9C8-N3-H3A108.5N2-C10-C11113.90 (14)C9-N3-H3A107.1N2-C10-C9109.32 (15)C17-N3-H3A107.9C11-C10-C9106.98 (14)O2-C1-O1125.09 (19)N2-C10-H10108.8O2-C1-C2116.26 (18)C9-C10-H10108.8C3-C2-C6117.18 (17)C12-C11-C16118.62 (19)C3-C2-C1116.78 (16)C12-C11-C10118.64 (17)C6-C2-C1125.90 (16)C16-C11-C10122.70 (18)	C6—N1—C5	118.28 (16)	Н8А—С8—Н8В	108.2
C6-N2-C10115.78 (14)N3-C9-H9A109.2C7-N2-C10110.66 (13)C10-C9-H9A109.2C8-N3-C9108.89 (14)N3-C9-H9B109.2C8-N3-C17112.30 (16)C10-C9-H9B109.2C9-N3-C17111.98 (14)H9A-C9-H9B107.9C8-N3-H3A108.5N2-C10-C11113.90 (14)C9-N3-H3A107.1N2-C10-C9109.32 (15)C17-N3-H3A107.9C11-C10-C9106.98 (14)O2-C1-O1125.09 (19)N2-C10-H10108.8O2-C1-C2118.56 (18)C11-C10-H10108.8C3-C2-C6117.18 (17)C12-C11-C16118.62 (19)C3-C2-C1116.78 (16)C12-C11-C10118.64 (17)C6-C2-C1125.90 (16)C16-C11-C10122.70 (18)	C6—N2—C7	112.85 (13)	N3—C9—C10	112.07 (14)
C7N2C10110.66 (13)C10C9H9A109.2C8N3C9108.89 (14)N3C9H9B109.2C8N3C17112.30 (16)C10C9H9B109.2C9N3C17111.98 (14)H9AC9H9B107.9C8N3H3A108.5N2C10C11113.90 (14)C9N3H3A107.1N2C10C9109.32 (15)C17N3H3A107.9C11C10C9106.98 (14)O2C1O1125.09 (19)N2C10H10108.8O2C1C2118.56 (18)C11C10H10108.8C3C2C6117.18 (17)C12C11C16118.62 (19)C3C2C1116.78 (16)C12C11C10118.64 (17)C6C2C1125.90 (16)C16C11C10122.70 (18)	C6—N2—C10	115.78 (14)	N3—C9—H9A	109.2
C8-N3-C9 $108.89 (14)$ $N3-C9-H9B$ 109.2 $C8-N3-C17$ $112.30 (16)$ $C10-C9-H9B$ 109.2 $C9-N3-C17$ $111.98 (14)$ $H9A-C9-H9B$ 107.9 $C8-N3-H3A$ 108.5 $N2-C10-C11$ $113.90 (14)$ $C9-N3-H3A$ 107.1 $N2-C10-C9$ $109.32 (15)$ $C17-N3-H3A$ 107.9 $C11-C10-C9$ $106.98 (14)$ $O2-C1-O1$ $125.09 (19)$ $N2-C10-H10$ 108.8 $O2-C1-C2$ $118.56 (18)$ $C11-C10-H10$ 108.8 $O1-C1-C2$ $116.26 (18)$ $C9-C10-H10$ 108.8 $C3-C2-C6$ $117.18 (17)$ $C12-C11-C16$ $118.62 (19)$ $C3-C2-C1$ $116.78 (16)$ $C12-C11-C10$ $118.64 (17)$ $C6-C2-C1$ $125.90 (16)$ $C16-C11-C10$ $122.70 (18)$	C7—N2—C10	110.66 (13)	С10—С9—Н9А	109.2
C8-N3-C17 $112.30 (16)$ $C10-C9-H9B$ 109.2 $C9-N3-C17$ $111.98 (14)$ $H9A-C9-H9B$ 107.9 $C8-N3-H3A$ 108.5 $N2-C10-C11$ $113.90 (14)$ $C9-N3-H3A$ 107.1 $N2-C10-C9$ $109.32 (15)$ $C17-N3-H3A$ 107.9 $C11-C10-C9$ $106.98 (14)$ $O2-C1-O1$ $125.09 (19)$ $N2-C10-H10$ 108.8 $O2-C1-C2$ $118.56 (18)$ $C11-C10-H10$ 108.8 $O1-C1-C2$ $116.26 (18)$ $C9-C10-H10$ 108.8 $C3-C2-C6$ $117.18 (17)$ $C12-C11-C16$ $118.62 (19)$ $C3-C2-C1$ $116.78 (16)$ $C12-C11-C10$ $118.64 (17)$ $C6-C2-C1$ $125.90 (16)$ $C16-C11-C10$ $122.70 (18)$	C8—N3—C9	108.89 (14)	N3—C9—H9B	109.2
C9-N3-C17111.98 (14)H9A-C9-H9B107.9C8-N3-H3A108.5N2-C10-C11113.90 (14)C9-N3-H3A107.1N2-C10-C9109.32 (15)C17-N3-H3A107.9C11-C10-C9106.98 (14)O2-C1-O1125.09 (19)N2-C10-H10108.8O2-C1-C2118.56 (18)C11-C10-H10108.8O1-C1-C2116.26 (18)C9-C10-H10108.8C3-C2-C6117.18 (17)C12-C11-C16118.62 (19)C3-C2-C1116.78 (16)C12-C11-C10118.64 (17)C6-C2-C1125.90 (16)C16-C11-C10122.70 (18)	C8—N3—C17	112.30 (16)	С10—С9—Н9В	109.2
C8-N3-H3A108.5N2-C10-C11113.90 (14)C9-N3-H3A107.1N2-C10-C9109.32 (15)C17-N3-H3A107.9C11-C10-C9106.98 (14)O2-C1-O1125.09 (19)N2-C10-H10108.8O2-C1-C2118.56 (18)C11-C10-H10108.8O1-C1-C2116.26 (18)C9-C10-H10108.8C3-C2-C6117.18 (17)C12-C11-C16118.62 (19)C3-C2-C1116.78 (16)C12-C11-C10118.64 (17)C6-C2-C1125.90 (16)C16-C11-C10122.70 (18)	C9—N3—C17	111.98 (14)	Н9А—С9—Н9В	107.9
C9-N3-H3A 107.1 N2-C10-C9 109.32 (15) C17-N3-H3A 107.9 C11-C10-C9 106.98 (14) O2-C1-O1 125.09 (19) N2-C10-H10 108.8 O2-C1-C2 118.56 (18) C11-C10-H10 108.8 O1-C1-C2 116.26 (18) C9-C10-H10 108.8 C3-C2-C6 117.18 (17) C12-C11-C16 118.62 (19) C3-C2-C1 116.78 (16) C12-C11-C10 118.64 (17) C6-C2-C1 125.90 (16) C16-C11-C10 122.70 (18)	C8—N3—H3A	108.5	N2—C10—C11	113.90 (14)
C17-N3-H3A 107.9 C11-C10-C9 106.98 (14) O2-C1-O1 125.09 (19) N2-C10-H10 108.8 O2-C1-C2 118.56 (18) C11-C10-H10 108.8 O1-C1-C2 116.26 (18) C9-C10-H10 108.8 C3-C2-C6 117.18 (17) C12-C11-C16 118.62 (19) C3-C2-C1 116.78 (16) C12-C11-C10 118.64 (17) C6-C2-C1 125.90 (16) C16-C11-C10 122.70 (18)	C9—N3—H3A	107.1	N2—C10—C9	109.32 (15)
O2-C1-O1 125.09 (19) N2-C10-H10 108.8 O2-C1-C2 118.56 (18) C11-C10-H10 108.8 O1-C1-C2 116.26 (18) C9-C10-H10 108.8 C3-C2-C6 117.18 (17) C12-C11-C16 118.62 (19) C3-C2-C1 116.78 (16) C12-C11-C10 118.64 (17) C6-C2-C1 125.90 (16) C16-C11-C10 122.70 (18)	C17—N3—H3A	107.9	C11—C10—C9	106.98 (14)
O2—C1—C2 118.56 (18) C11—C10—H10 108.8 O1—C1—C2 116.26 (18) C9—C10—H10 108.8 C3—C2—C6 117.18 (17) C12—C11—C16 118.62 (19) C3—C2—C1 116.78 (16) C12—C11—C10 118.64 (17) C6—C2—C1 125 90 (16) C16—C11—C10 122 70 (18)	O2—C1—O1	125.09 (19)	N2—C10—H10	108.8
O1-C1-C2 116.26 (18) C9-C10-H10 108.8 C3-C2-C6 117.18 (17) C12-C11-C16 118.62 (19) C3-C2-C1 116.78 (16) C12-C11-C10 118.64 (17) C6-C2-C1 125 90 (16) C16-C11-C10 122 70 (18)	O2—C1—C2	118.56 (18)	С11—С10—Н10	108.8
C3—C2—C6 117.18 (17) C12—C11—C16 118.62 (19) C3—C2—C1 116.78 (16) C12—C11—C10 118.64 (17) C6—C2—C1 125 90 (16) C16—C11—C10 122 70 (18)	01—C1—C2	116.26 (18)	С9—С10—Н10	108.8
C3—C2—C1 116.78 (16) C12—C11—C10 118.64 (17) C6—C2—C1 125 90 (16) C16—C11—C10 122 70 (18)	C3—C2—C6	117.18 (17)	C12—C11—C16	118.62 (19)
C6-C2-C1 125 90 (16) C16-C11-C10 122 70 (18)	C3—C2—C1	116.78 (16)	C12—C11—C10	118.64 (17)
122.70(10) $122.70(10)$	C6—C2—C1	125.90 (16)	C16—C11—C10	122.70 (18)
C4—C3—C2 120.64 (18) C11—C12—C13 121.0 (2)	C4—C3—C2	120.64 (18)	C11—C12—C13	121.0 (2)
С4—С3—Н3 119.7 С11—С12—Н12 119.5	С4—С3—Н3	119.7	C11—C12—H12	119.5
С2—С3—Н3 119.7 С13—С12—Н12 119.5	С2—С3—Н3	119.7	C13—C12—H12	119.5
C5-C4-C3 118.00 (18) C14-C13-C12 120.0 (2)	C5—C4—C3	118.00 (18)	C14—C13—C12	120.0 (2)
C5—C4—H4 121.0 C14—C13—H13 120.0	С5—С4—Н4	121.0	C14—C13—H13	120.0
C3—C4—H4 121.0 C12—C13—H13 120.0	С3—С4—Н4	121.0	C12—C13—H13	120.0

supplementary materials

N1-C5-C4	123 40 (19)	C13—C14—C15	1197(2)
N1—C5—H5	118.3	C13—C14—H14	120.2
С4—С5—Н5	118.3	C15—C14—H14	120.2
N1—C6—C2	122.34 (16)	C14—C15—C16	120.5 (2)
N1—C6—N2	117.30 (15)	C14—C15—H15	119.8
C2—C6—N2	120.36 (16)	С16—С15—Н15	119.8
N2—C7—C8	111.90 (14)	C15—C16—C11	120.2 (2)
N2—C7—H7A	109.2	C15—C16—H16	119.9
С8—С7—Н7А	109.2	С11—С16—Н16	119.9
N2—C7—H7B	109.2	N3—C17—H17A	109.5
С8—С7—Н7В	109.2	N3—C17—H17B	109.5
H7A—C7—H7B	107.9	H17A—C17—H17B	109.5
N3—C8—C7	109.50 (16)	N3—C17—H17C	109.5
N3—C8—H8A	109.8	H17A—C17—H17C	109.5
С7—С8—Н8А	109.8	H17B—C17—H17C	109.5
N3—C8—H8B	109.8	НЗВ—ОЗ—НЗС	111.9
С7—С8—Н8В	109.8	H4A—O4—H4B	117.0
O2—C1—C2—C3	106.1 (2)	C17—N3—C8—C7	177.34 (15)
O1—C1—C2—C3	-70.7 (2)	N2—C7—C8—N3	59.1 (2)
O2—C1—C2—C6	-69.5 (3)	C8—N3—C9—C10	58.5 (2)
O1—C1—C2—C6	113.8 (2)	C17—N3—C9—C10	-176.74 (16)
C6—C2—C3—C4	2.0 (3)	C6—N2—C10—C11	-55.0 (2)
C1—C2—C3—C4	-174.01 (19)	C7—N2—C10—C11	175.00 (15)
C2—C3—C4—C5	-2.4 (3)	C6—N2—C10—C9	-174.59 (14)
C6—N1—C5—C4	3.7 (3)	C7—N2—C10—C9	55.40 (18)
C3—C4—C5—N1	-0.5 (3)	N3-C9-C10-N2	-57.03 (19)
C5—N1—C6—C2	-4.1 (3)	N3—C9—C10—C11	179.19 (15)
C5—N1—C6—N2	175.71 (16)	N2-C10-C11-C12	151.89 (16)
C3—C2—C6—N1	1.4 (3)	C9-C10-C11-C12	-87.2 (2)
C1—C2—C6—N1	176.95 (18)	N2-C10-C11-C16	-30.5 (2)
C3—C2—C6—N2	-178.48 (16)	C9—C10—C11—C16	90.4 (2)
C1—C2—C6—N2	-2.9 (3)	C16-C11-C12-C13	1.4 (3)
C7—N2—C6—N1	117.95 (18)	C10-C11-C12-C13	179.18 (17)
C10-N2-C6-N1	-11.0 (2)	C11-C12-C13-C14	0.0 (3)
C7—N2—C6—C2	-62.2 (2)	C12-C13-C14-C15	-1.0 (3)
C10-N2-C6-C2	168.87 (15)	C13-C14-C15-C16	0.6 (3)
C6—N2—C7—C8	170.43 (15)	C14—C15—C16—C11	0.8 (3)
C10—N2—C7—C8	-58.0 (2)	C12-C11-C16-C15	-1.8 (3)
C9—N3—C8—C7	-58.05 (19)	C10—C11—C16—C15	-179.48 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H3A···O1 ⁱ	0.91	1.77	2.681 (2)	178
O3—H3C···O4 ⁱⁱ	0.87	1.92	2.781 (3)	179
O4—H4A···O2 ⁱⁱⁱ	0.85	1.94	2.761 (2)	162
O3—H3B…O1	0.87	2.21	3.038 (3)	161
O4—H4B…N1	0.85	2.23	3.037 (3)	159

Symmetry codes: (i) -*x*+1/2, *y*+1/2, -*z*+3/2; (ii) -*x*+1/2, *y*-1/2, -*z*+3/2; (iii) *x*, *y*+1, *z*.

